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Detecting External Disturbances on the Camera Lens
in Wireless Multimedia Sensor Networks
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Abstract—Assessing the quality of images acquired by nodes
of a wireless multimedia sensor network (WMSN) is a critical
issue, particularly in outdoor applications where external distur-
bances such as the presence of water, dust, snow, or tampering
on the camera lens may seriously corrupt the acquired images.
In this paper, we address the problem of determining when the
lens of a microcamera mounted on a WMSN node is affected
by an external disturbance that produces blurred or obfuscated
images. We show that such a problem can be solved by considering
change detection tests applied to a measure of the blur intensity.
Interestingly, both measuring the blur and the change detection
test do not require any assumption about the content of the
observed scene, its nature, or the characteristics of the blur. The
proposed methodology is thus flexible and effective for a large
class of monitoring applications. In particular, it is attractive when
nodes cannot continuously acquire images (e.g., because of energy
limitations) and background subtraction methods are not feasible.
Two solutions, with different hardware costs, have been designed,
which can detect disturbances on the camera lens at either/both
the node or/and the remote station level.

Index Terms—Change detection tests, degradation detection,
digital image analysis, digital image processing, wireless multi-
media sensor networks (WMSNs).

I. INTRODUCTION

N RECENT years, wireless multimedia sensor networks

(WMSNSs) [1], [2] have gained an increasing interest in
the wireless sensor network (WSN) community, e.g., see ap-
plications in [3]-[6]. Such networks differ from traditional
WSNs for the presence of audio and visual sensors that provide
photos, videos, and audio streams. WMSN applications range
from tracking and surveillance to traffic control and environ-
mental monitoring: not rarely, nodes are requested to operate
in outdoor harsh environments. Noticeable examples of nodes
provided with visual sensors are given in [7]-[10].

This paper addresses an often-forgotten problem that regu-
larly arises in WMSN nodes designed to work in a real environ-
ment: the presence of external disturbances on the camera lens
that affect the acquired image. Possible sources of disturbances
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are rain and sprinkle drops, humidity, dust, and tampering
attacks, which introduce blur or dim effects in the acquired
images. Fig. 1 shows some images taken with water drops
insisting on the camera lens. As one would expect, there may
be a significant loss in the image quality, which also depends
on the type and entity of the disturbance. Since WMSNs are
energy-constrained embedded systems, we should not waste
energy in processing or, worse, sending images to the remote
station when the blur intensity impairs its information content.
Furthermore, when such a disturbance is detected in a node,
different actions can be accomplished to tackle its presence.
For instance, all units in a neighborhood of the disturbance-
affected node can increase their field of view, and the node
can activate different sensors (such as microphones and pas-
sive infrared/microwave motion detectors) by using intelligent
control actions, e.g., see [11], or, in the worst case, request
human intervention. In any case, any image-based algorithm
in execution on the node requires a preliminary procedure to
determine whether the acquired image is blurred/obfuscated or
not to give a confidence to the available information and drive
consequent actions. The same holds for algorithms acting at
the cluster level. As a consequence, a mechanism for automati-
cally diagnosing the status of the image acquisition system is
requested in WMSN applications operating in outdoor envi-
ronments. In particular, in monitoring applications that perform
sporadic image acquisition, blur detection should not be based
on image comparisons (e.g., comparison between the current
image and an estimated background image) since the scene
between two consecutive images can significantly change.

The detection of external disturbances insisting on the cam-
era lens remains an open research issue. For instance, the
method proposed in [12] aims at detecting tamper attacks that
obscure the camera field of view. Nevertheless, the method has
been designed for systems performing continuous acquisition,
and it compares the acquired images with a learned background
of the monitored scene. As previously discussed, this could be
impractical in several WMNS applications.

In principle, any algorithm for automatic blur detection
can be used to determine when disturbances insisting on the
camera lens are corrupting the image acquisition system. The
algorithms presented in [13] and [14] move in this direction
by determining if an image is blurred or contains blurred
areas and by classifying each image/area as out of focus or
motion blurred. Unfortunately, these algorithms are based on
computationally demanding feature extraction steps, which are
hardly executable on low-performance WMSN nodes.

The effects of atmospheric elements such as rain, fog,
and haze on acquired images have been studied under the
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Fig. 1.

Example of images acquired with some drops of water affecting the camera lens. Drops introduce blur and dim areas in the resulting images. In turn, they

may affect the whole image as in (a) and (b) or only some areas of the image as in (c) and (d).

assumption that these elements are present between the camera
and the observed scene, i.e., they are not insisting on the camera
lens. In particular, [15] considers the case where water drops
appear in the depth of field of the camera with the consequence
that drops can be assumed as optical lenses that reflect and re-
fract the light, producing a wide-angle view of the environment.
An algorithm to detect and remove falling raindrops as time-
varying fluctuations in video sequences is presented in [16].
Other ad hoc image enhancement algorithms have been pro-
posed for compensating the effects of bad weather conditions
on images or videos (e.g., [17] and [18] introduce methods to
remove fog and haze from a single image). These algorithms
consider the light scattering produced by small droplets of
dust or mist in the atmosphere to perform effective contrast
enhancement. However, images acquired with drops or other
external disturbances insisting on the camera lens are signifi-
cantly different from all the aforementioned cases, as they are
significantly blurred and the suggested solutions are not meant
for blur removal; rather, they perform contrast enhancement.
The related literature suggests to jointly estimate and remove
blur in a single blurred image (blind deblurring) to address the
blur removal problem. Unfortunately, these solutions cannot be
used to enhance the considered images, as they assume the blur
to be spatially invariant [19], [20] in contrast with the spatially
variant nature of the blur introduced by disturbances on the
camera lens (particularly when the external disturbances do not
uniformly cover the camera lens). In addition, blur removal
algorithms assume the input image to be blurred and do not
provide hints for deciding whether that is the case or not.

This paper proposes a novel method for monitoring the status
of the image acquisition system to detect in advance a possible
structural information loss due to perturbations insisting on the
camera lens (e.g., drops, tampering, and dust). As such, we do
not address the image enhancement issue but signal the pres-
ence of an external disturbance when it arises. To accomplish
such a task in a time-variant context without assuming strong
hypotheses about the observed scene and its dynamics, we
require two independent steps: 1) measuring the blur intensity
in the acquired images and 2) detecting the change in blur
intensity, i.e., detecting the presence of the disturbance on the
camera lens. Two solutions providing different detection capa-
bilities, computational complexities, and power consumption
are proposed here to meet the requirements of a typical WMSN
scenario. The solutions act at either

1) the node level, where both the blur measure and the
change detection test are executed on a WMSN node; or

2) the network level, with the blur measure computed at the
node level and the outcoming estimate sent to a base
station to undergo the change detection phase.

In other words, the two suggested philosophies use the same
figure of merit to quantify the blur in the acquired images but
implement different change detection tests based on the avail-
able hardware resources to detect a—possible—blur presence.

This paper extends the work presented in [21] as it introduces
the node-level solution, provides the analysis of its algorithmic
complexity, and strengthens the experimental section.

The structure of this paper is described as follows. Section II
introduces the observation model, and Section III describes
the blur change detection solutions in detail. The experimental
campaign, which includes both real and synthetic testbeds, is
finally presented in Section IV; experiments will be tailored to
the drop case, but the methodology can easily be extended to
cover similar types of external disturbances.

II. OBSERVATION MODEL

We have already seen in Section I that disturbing elements
insisting on the camera lens are typically out of focus and
induce blur or dim effects on the acquired image z. This
phenomenon can be modeled as the result of a degradation
operator D applied to the error-free and unknown image y (the
original image), i.e.,

z=Dly|. (1)

The squared brackets are used to indicate the argument of an
operator. Here, D takes into account blur and noise according
to the widely accepted additive model [22], i.e.,

z(z) = Dlyl(x) = Bly)(z) +n(x), zeX ()
where x indicates the pixel coordinates, X is the discrete
image grid, B is the blurring operator, and 7 is the noise term.

Typically, the blurring operator 15 is assumed to be linear (e.g.,
see [23]), leading to the final model, i.e.,

Blyl(z) = / y(@)h(z, s)ds. 3)

X

h(x,-) represents the blur point spread function (PSF) at z,
which is assumed to be a nonnegative function, as it performs
local smoothing on y. The model described in (3) is very
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general and hosts different behaviors induced by the presence
of drops/dust on the camera lens.

We then consider the general case where each sensor node of
the network acquires a sequence of N observations {z;}, i =
1,...,N,ie.,

with 7)(x) being a stationary noise. The sequence of the original
images {y;}, ¢ =1,..., N, may significantly change in their
content, depending on the monitored scene. As a consequence,
a naive approach exploiting direct comparisons among two
consecutive observations z; and z;+; may easily fail, being dif-
ficult to distinguish if different observations are due to different
original images (i.e., y; # Y;41) or to a change in the blurring
operator (B; # Bit1).

III. DETECTING CHANGES IN THE DEGRADATION PROCESS

The proposed method requires analyzing the observations
in {z;}, ¢=1,..., N, to determine a possible change in the
degradation operator D (change associated with an external
presence on the camera lens). Since the noise is assumed to be
stationary, a structural change in the image acquisition system,
such as the presence of drops/dust, reflects a change in the
blur operator 3: detecting a change in the blur operator implies
detection of a structural change affecting the image acquisition
system.

A. Measuring the Blur

As one could imagine, it is hard to devise an index or figure of
merit able to measure the actual blur of an image given a generic
blurring operator 3. What the related literature suggests instead
is to indirectly measure the blur, by relying on some details
or frequency information present in the observed image z;, as
done when identifying the optimal camera parameters (e.g.,
focal length, aperture, and exposure) before taking a shot [24]—
[27]. The underlying philosophy onto which these measures
rely reflects the intuitive idea that the blur suppresses the
high-frequency components of an image by local smoothing.
Based on such observation, most of blur measures are actually
estimates of the energy content of the image in high frequency.
In the same direction, here, we consider the blur measure

mi =Mz = [ Vi), do )
X

where || - ||; refers to the £ norm. In the discrete domain,
the image derivatives are computed by means of differentiating
filters (here, the Sobel ones [22]). Note that M is indirectly
a measure of the total energy of the image details; as such, it
is particularly sensitive to the image content (M is low when
computed on blur-free images having few details, as well as in
images heavily corrupted by blur). However, this measure can
also be used on partially blurred images, and it guarantees a
very low computational complexity.

Let us discuss how the noise term 7 influences a sequence
of blur measures {m;}, i = 1,..., N. Typically, noisy images
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have larger blur measures compared to the corresponding noise-
free images: the larger the o is, the larger the blur measure is.
In addition, since the noise is stationary, it does not introduce
anomalies in the sequence of blur measures. We expect that
when the blur measure is dominated by the noise, detecting a
decrease in the blur measure according to B becomes much
more challenging.

B. Detecting the Change

Change detection tests are statistical techniques that, by mon-
itoring the behavior of a process over time, detect a possible
change in its behavior. In the considered case, the process
under monitoring is the degradation operator D that corrupts
the sequence of unknown original images {y;}, i =1,..., N,
and gives the observation sequence {z;}, i =1,...,N; see
[28] for another application of change detection tests in WSNs.
Among the large range of solutions (data driven, analytical, or
knowledge based) present in the literature to assess a change in
processes [29], we focus on data-driven techniques since they
do not require any a priori information about the process under
investigation. The most common data-driven techniques for
change detection generally require a design-time configuration
phase to configure the test parameters either by exploiting
a priori information or through a trial-and-error approach [29]—
[31]. In our problem, we suggest to use two adaptive self-
configuring statistical tests, i.e., the adaptive cumulative sum
(CUSUM) and the computational intelligence-based CUSUM
(CI-CUSUM) [32], for their effectiveness in detecting abrupt
changes and smooth drifts. Both tests are general, do not
require any information about the process under monitoring,
and exploit an initial sequence {m;}, i =1,...,T, of blur
measures computed from 7' external disturbance-free images
for the automatic configuration of their parameters. Such a
sequence allows the tests for both estimating the probability
density function (pdf) of m; in the absence of external dis-
turbance (i.e., the null hypothesis ©°) and defining alternative
hypotheses ©'s representing the “not being in ©°” to address
any type of nonstationary change (the alternative hypotheses are
automatically defined during the training phase).

To guarantee an accurate estimate of test parameters, the
authors suggest to consider a reasonable large training se-
quence, e.g., T > 400. Both tests work on subsequences of blur
measures (in our experiments, we considered subsequences of
20 blur measures) and estimate the transition from ©° to ©! by
measuring the log-likelihoods between the pdf in the absence
of drop/dust and the pdf’s of all the alternative hypotheses at
subsequence 7 (one at a time), i.e.,

o N®1(¢‘r)
r(r) = lniN@)o((bT) 6)

where ¢, is the average value of the blur measures of the 7th
subsequence, and Ng is a multivariate Gaussian distribution
parameterized in O.

The log-likelihood ratio has an important property: a change
in the pdf of the process under monitoring can be detected
by analyzing the sign of the log-likelihood ratios. Both tests
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are able to detect the presence of drops in the images by
sequentially checking whether the ¢,s have been generated
according to a pdf associated with ©° or one of the alternative
hypotheses. When one of the cumulative sums of the r(7)
overcomes an automatically defined threshold, the test detects
a change in the statistical behavior of the ¢,s (a detailed
description of both tests is given in [32]). Since the log-
likelihood ratio compares couples of pdf’s, both tests have a
number of running log-likelihood ratios that are equal to the
number of alternative hypotheses defined by the test (i.e., each
log-likelihood ratio compares the null hypothesis with one of
the alternative hypotheses). The main difference between the
adaptive CUSUM and the CI-CUSUM test consists of the set
of considered features. More specifically, the adaptive CUSUM
assesses changes in the mean and the variance of the process
under monitoring, while the CI-CUSUM exploits a larger set of
features (i.e., not only the mean and variance but also features
derived from the pdf and the cumulative density function, as
well as features inspired by change detection tests present in
the literature), and it is more accurate at the expense of a signif-
icant increase in computational complexity. Obviously, a higher
number of alternative hypotheses guarantee a more effective
exploration of the hypotheses space and, hence, a larger change
detection ability. The selection between the adaptive CUSUM
and the CI-CUSUM test is thus strictly related to the available
computational resources and the desired detection accuracy.
We suggest considering the adaptive CUSUM test for the node
solution (i.e., the change detection test is directly executed on
nodes), while the CI-CUSUM test is the suitable choice for
the network solution at either the cluster heads or the remote
control station.

IV. EXPERIMENTS

The proposed methods have been tested on two applications.
The first benchmark refers to a sequence of synthetically gener-
ated observations (Application D1); the second refers to a real
sequence of images (Application D2). In both cases, our goal
is to detect the presence of water drops. Four figures of merit
have been suggested to assess the performance of the proposed
solutions.

DL Detection latency. It represents the number of images
required to detect a change in the blurring process after
the drop arrival.

F P False positives. It measures the number of blur changes
erroneously detected by the test.

F'N False negatives. It measures the number of blur changes
not detected by the test.

ET  Execution time (in seconds) of the adaptive CUSUM and

the CI-CUSUM test estimated with Matlab.!

Execution times have separately been evaluated for the train-
ing phase needed to configure the test parameters (E7T training)
and for the operational phase (E'T" operational). The configura-
tion set accounts for 500 blur measures computed from blur-
free observations; the validation set accounts for 1500 ones.

IReference platform: Intel Core 2 Duo 2.53-GHz CPU, no parallel threads.
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Fig. 2. Example of synthetically generated observations. First row: the blur
affects the whole image, o = 0.08, and v = 1, 4, 8, respectively. Second row:
the blur affects only some part of the image, 0 = 0.02, and v = 1,4,8,
respectively.

A. Application D1

A set of sequences of observations has been generated
according to (4). Each sequence contains 2000 observations
obtained from 75 gray-scale 512 x 512 pixel original images,
scaled in the [0, 1] value interval. In each sequence, the first
1000 observations are blur-free, i.e., B; =Z, i = 1,...,1000,
where 7 stands for the identity operator; the others have been
affected by a blurring operator 3;, ¢ = 1001, . .., 2000, having
the PSFs of (3) defined as

igi‘i XoUuX =X ()
where Xy N Xy =0, § is the Dirac’s delta function, and g
a Gaussian kernel of standard deviation v. Sets Ay and A}
denote blur-free and blurred areas, respectively. Therefore, the
considered blur may affect only some parts of the original
image, and within the blurred areas, the blurring operator is
space invariant. We considered two different cases: in the first,
the blurring operator affects the whole image (i.e., X} = X,
FULL blur); in the second, the blurring operator affects only
some parts of the image (i.e., X1 C X', PART blur). In this latter
case, the sets Ay and X are the same for all sequences. In each
sequence, the noise term is Gaussian 1 ~ N(0,0?) added to
both the blur-free and blurred images.

For both the FULL and the PART blur, we considered eight
values of the standard deviation of the Gaussian kernel g of
(7Yyv =1,2,...,8 and four values of o; the standard deviation
of n ranges from 0.02 to 0.08 (with a step of 0.02). For each
parameter pair (v, ), we generated 100 different sequences to
compute the figures of merit for the two solutions. Fig. 2 shows
that observations generated with such parameters, at least for
high values of v, are very similar to images acquired with a
drop on the camera lens, such as those in Figs. 1 and 5.

Tables I and II show the change detection ability of the
network and the node-level solutions, respectively. On one
hand, the network-level solution guarantees less F'Ps than the
node-level one, thanks to the superior detection ability of the
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TABLE 1
NETWORK-LEVEL SOLUTION: F'P AND F'N EVALUATED ON DATA
SYNTHETICALLY GENERATED IN APPLICATION D1

v

Blur o Detection 1 2 3 4 5 6 7 8
FP(%) 10 18 18 7 10 10 14 7
FULL 0.02° pyesy 1 0 1 0 4 2 0 0
FP(%) 14 13 9 9 12 16 11 1
FULL 004 pyeosy 6 0 0o 1 0 3 0 1
FP%) 8 15 9 9 9 6 9 17
FULL 0.06  pyesy 20 2 03 1 3 2 0 0
FP%) 9 11 4 12 4 13 10 3
FULL 008 pyveoyy 6 0 1 1 1 1
P%) 11 _8 6 11 8 13 13 1
PART 0.02° pyeosy 34 17 13 11 11 3 6 5
FP%) 12 11 10 7 4 11 10 0
PART 0.4  pyosy 37 16 10 12 7 7 6 5
FP%) 12 11 19 12 10 8 8 14
PART 006 rywyy 38 19 4 12 7 8 8 5
%) 5 12 8 12 13 3§ 13 16
PART 008 pryosy 36 20 8 11 11 7 7 4

TABLE 1I
NODE-LEVEL SOLUTION: F'P AND I'N EVALUATED ON DATA
SYNTHETICALLY GENERATED IN APPLICATION D1

Blur o Detection 1 2 3 4 5 6 7 8
FP(%) 21 17 18 10 19 13 18 10
FULL 002 pyosy 2 0 0 0 0 0 0 0
FP(%) 15 14 14 17 8 20 15 15
FULL 004 pyeosy 3 0 0 0 0 0 0 0
FP%) 16 19 16 10 17 15 17 13
FULL 006 ryvosy 3 0 0 0 o 0 0 0
FR%) 7 18 O 13 12 17 15 18
FULL 008 pyosy 2 0 0 0 0o 0 0 0
FP(%) 16 11 14 20 17 10 12 15
PART 0.02  pyeogy 69 41 34 24 25 27 23 19
FP%) 16 11 19 17 19 16 19 16
PART 004 pyoyy 65 51 38 32 27 22 23 23
FP(%) 18 15 16 20 15 15 10 14
PART 006 pyogy 71 50 33 25 27 31 23 21
FP(%) 16 16 10 18 14 14 10 24
PART 0.08

FN(%) 70 42 33 33 32 24 24 21

CI-CUSUM test. This is particularly evident in the “PART”
case at low values of v, where the node-level solution is not able
to detect the presence of blur (/' N's in the last rows of Table II).
On the other hand, the node-level solution guarantees very low
detection delays (the test is very quick in detecting changes)
and a reduced computational complexity. Figs. 3 and 4 show
the detection latency on the considered data set for both the
node- and network-level solutions. In both cases, the amount
of images required to detect the presence of blur decreases as
v increases. We observe that the F'P values are independent
from the values of v (the standard deviation of the Gaussian
PSF), while F'N's decrease as v increases: the higher the blur,
the easier its detection. In particular, when the blur corrupts
only part of the image (the “PART” case), the values of F')NV
are higher than when the blur corrupts the whole image (the
“FULL” case). Moreover, at low values of 1, the node-level
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solution is not able to reliably detect the presence of drops
(see the F'N in the last rows of Table II). Both the network-
and node-level solutions are able to cope with the considered
noise levels: the values of I'Ps, F'Ns, and D Ls show that the
detection performance is not altered. We comment that it is
extremely important to provide a reduced number of F'Ps, as
these false alarms are sent over the network and they may result
in a waste of resources. Policies at the unit and cluster levels
could be implemented to reduce F' Ps by exploiting information
coming from neighboring units. The execution time averaged
over the algorithm runs is given in Table III and shows that the
node solution is considerably faster than the network one during
both the training and operational phases.

B. Application D2

The second application refers to a set of 25 uncompressed
video sequences acquired in five different dynamic scenarios
(three outdoor and two indoor). Each sequence is composed
of 2000 frames (320 x 240 pixels) recorded by an integrated
webcam of a laptop computer. Each frame has been converted
into gray scale by averaging the red—green—blue values of each
pixel. The first 1000 frames are drop-free, while the next 1000
have been acquired with some water drops on the camera
lens. Fig. 5 shows, along rows, six frames taken from a video
sequence (one per each scenario). Similar to Application D1,
the training phase of both tests exploits the first 500 drop-
free images of each sequence. The figures of merit have been
evaluated by averaging the results of the 25 video sequences;
the comparison between the performance of the two solutions
is presented in Table I'V.

The experimental results on this data set are in line with those
of Application D1: the network-level solution guarantees lower
F' Ps than the node solution, which, on the contrary, provides a
prompter detection ability (lower values of DL) and reduced
execution time. When processing these video sequences, the
F Ps are determined by accidental and unpredictable occluding
objects that do not appear in the training set, as, for example,
the shadowed face and the transparent plastic bag appearing in
the sequence illustrated in the third and fourth rows of Fig. 5,
respectively. In fact, different from the synthetically generated
sequences of Application D1, here, the training set might not be
fully representative of all the original images y; that the WMSN
node has to face in working conditions. Occluding objects may
also induce /"N when they are shown in the training set, as the
decay in the blur measures due to the drop arrival could. Motion
blur, which frequently occurs in images of dynamic scenes
acquired in low-light conditions, may also cause both F'Ps and
F'N's since it causes loss of details in the observations and sub-
sequent decay of the blur measures. This challenging problem
could be (at least) partially addressed by integrating lighting
information and exposure times in the change detection tests.
The detection performance can be improved by considering
longer training sequences and, when possible, by updating the
training set with user-supervised and disturbance-free images
acquired during the test execution.

Fig. 6 shows the blur measures m; associated with the
sequence including the frames depicted in the second row
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Network Level Solution: Detection Latency
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DL of the network solution as a function of v (the standard deviation of the Gaussian PSF), computed for different values of o (the noise standard

deviation). (a) Plot of the D L when the blur affects the whole image. (b) Plot of the D L when the blur affects only some areas.

Node Solution: Detection Latency
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Fig.4. DL of the node solution as a function of v (the standard deviation of the Gaussian PSF), computed for different values of o (the noise standard deviation).
(a) Plot of the D L when the blur affects the whole image. (b) Plot of the D L when the blur affects only some areas.

TABLE 1II
APPLICATION D1: ET' AVERAGED OVER THE 2 X 8 X 4 x 100
ALGORITHM RUNS FOR BOTH THE NETWORK-LEVEL
AND NODE-LEVEL SOLUTIONS

solution  ET training (s)  £7 operational (s)
network 0.125 s 0461 s
node 0.010 s 0.003 s

of Fig. 5: in this case, both solutions detect the drop arrival
within the subsequence ending at frame 1180 (DL = 180).
Fig. 7 shows the blur measures m,; computed from the sequence
illustrated in the third row of Fig. 5: in this case, the network
solution detects the drop arrival within the subsequence ending
at frame 1240 (DL = 240), while the node solution bears a

false positive at frame 880, because of a sudden decay in the
blur measures.

C. Computational Complexity of the Node-Level Solution

As expected, the execution times reported in Tables III
and I'V show that the adaptive CUSUM has a significantly lower
computational complexity than the CI-CUSUM in both the
training and operational phases. In fact, the adaptive CUSUM
assesses changes by solely inspecting variations in the mean
and variance of ¢.s, while the CI-CUSUM considers a larger
set of features to improve the detection ability.

We present a detailed analysis of the computational complex-
ity on the adaptive CUSUM to justify its use at the node level.
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training set
0 ) ) ) 500

1000
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validation set

1500

Fig. 5.
appear at frame 1001.

TABLE IV
APPLICATION D2: DETECTION PERFORMANCE EVALUATED FOR BOTH THE
NETWORK-LEVEL AND NODE-LEVEL SOLUTIONS. F'P AND F'IN HAVE
BEEN COMPUTED OVER 25 VIDEO SEQUENCES, WHILE THE VALUES
OF DL AND ET HAVE BEEN AVERAGED OVER THE 25 RUNS

solution FP(%) FN(%) DL  ET training (sec) ET operational (s)
network 16 4 181.0 0.127 s 0.461 s
node 24 4 44.667 0.009 s 0.003 s

The evaluation of the blur measure by (5) is discretized and
implemented with (2(s — 1) + 4) integer operations per pixel,
with s being the number of nonzero coefficients of the con-
volutional filter used for computing image derivatives. In our
Matlab implementation, s = 6 (requiring 14 integer operations
per pixel); s can be reduced to 2 when a 1-D filter is used (six
integer operations per pixel).

The operational phase of the adaptive CUSUM, which con-
stitutes the computational load in working conditions requires,
for each subsequence of 20 blur measures:

1) computing the mean of the 20 blur measures of the frame

(20 floating-point operations);

2) computing two logarithms (2 x 35 floating-point

operations);

3) evaluating a 1-D standard Gaussian function in three

points (3 x 28 floating-point operations).

The number of floating-point operations has been estimated
with Matlab. It follows that the execution of the adaptive

S S S

Example of observations composing the video sequences. Each row shows six frames taken from an acquired video sequence. In all sequences the drops
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Fig. 6. Blur measures (5) computed in the sequence shown in the second row
of Fig. 5.

CUSUM test requires 175 floating-point operations per each
subsequence of 20 blur measures. Such a reduced and com-
putationally light sequence of operations can realistically be
executed on a WMSN node having limited hardware and energy
resources such as the [7]-[10] node platforms.
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Blur measures (5) computed in the sequence shown in the third row

V. CONCLUSIONS

This paper has presented two different solutions for detect-
ing the presence of external disturbances on the camera lens
in WMSN nodes. Such aspect is particularly relevant in the
WMSN community since nodes quite often operate outdoors
in harsh environments and it is important to continuously
assess the status of the image acquisition system. The proposed
solutions have combined a simple and easy-to-compute blur
measure and a change detection test and have been proven
effective on both synthetically generated images and video
sequences acquired from a webcam.

The analysis of the computational complexity has shown
that the node-level solution can be implemented on WMSN
nodes deployed in critical environments. Ongoing work re-
gards the implementation of the node-level solution on an
STMicroelectronics prototype board, which represents the cur-
rent state of the art in low-power smart cameras [10]. This
board is equipped with the ST-VS6724 2-megapixel camera
[33] and the ST STR912FA microcontroller [34], running at
96 MHz with 96-Kb SRAM. The board is able to process
images in real time, delivering video streams at 30 fps. Fur-
thermore, we are investigating strategies at the cluster level
to improve the detection performance and reduce the number
of F'Ps by exploiting local knowledge; such clusters can be
generated as in [35].
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